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Abstract. We describe Fourier pseudospectral time-domain simulations, carried out in order to study
light interacting with a metallic nanoscale object. The difficulty of using Fourier methods to accurately
predict the electromagnetic scattering in such dielectric configuration arises from the discontinuity in the
dielectric function along the surface of the metallic object. Standard Fourier methods lead to oscillatory
behavior in approximating solutions that are nonsmooth or that have steep gradients. By applying the
Gegenbauer reconstruction technique as a postprocessing method to the Fourier pseudospectral solution, we
successfully reduce the oscillations after postprocessing.
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1 Introduction

Metallic nanostructures, such as metal nanoparticles and nanoholes in thin metal films, are of considerable
interest because of the possibility of creating surface plasmon excitations when interacting with light [2], [21].
Surface plasmons are collective electronic excitations that effectively concentrate and confine light energy.
The manipulation of surface plasmons could lead to novel nanoscale optoelectronic devices [4], [16], [17].

Numerical simulations play an important role as a cost-effective tool for prototyping designs of such
devices before manufacture. Among computational methods, Fourier methods have been naturally considered
for problems with periodic features, such as planar waveguides and photonic crystal structures for integrated
photonic devices, and their computational implementations and their error estimates have been analyzed in
the literature [7], [9], [24].

In this paper we show how Fourier methods can also be applied to solve electromagnetic wave-scattering
problems in metallic nanostructures, which do not possess periodic features in their configurations. Our focus
is on mathematical reconstruction techniques for Fourier pseudospectral simulation data, using Fourier—Padé
and Gegenbauer approximations [14], [19], [22], [24], [25].

As a first step, we study light interacting with a small metal cylinder in a vacuum. The cylinder can be
viewed as a silver nanowire with a diameter of 50 nm.

Before presenting the mathematical formulas, we give a brief overview of the mechanism, describing the
physics of scattering and absorption by a single nanoparticle. An applied oscillating field (i.e., an incident
electromagnetic wave) induces a dipole moment in metallic region. These dipoles oscillate at the frequency
of the applied field. The incident waves are absorbed in the metallic region and converted into a surface
plasmon. Plasmons are the electron density waves associated with longitudinal waves propagating in matter
through the collective motion of large number of electrons; a surface plasmon is defined as a coupled, localized
electromagnetic field charge density oscillation propagating along the metallic surface.
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Electromagnetic fields associated with the plasmon can be found from Maxwell’s equations if the dielectric
response of the medium is lumped into corresponding complex dielectric constants under some condition.
The real part of the metal dielectric constant must be negative, and its absolute value should be greater
than that of the imaginary part. The imaginary part of the metal dielectric constant determines how fast
the plasmons decay by dissipating their energy into heat, which one wishes to have small.

We consider a y-polarized incident light traveling in the forward = direction. The incident light leaks an
electrical field intensity, called an evanescent wave, into the metallic region. The amplitude of this evanescent
wave decreases exponentially with distance from the interface, decaying over a distance of about one light
wavelength from the surface. It may penetrate the metal cylinder and excite electromagnetic surface plasmon
waves propagating within the metal cylinder surface. This surface plasmon is polarized in the plane of the
surface and generates the huge enhancement of the fields at the metallic surface.

At this scale, the field of the incoming and outgoing wave cannot be resolved because the fields close
to the metal are so large. As a result of the abrupt sharp change in magnitude around the metal surface,
Fourier methods generate oscillatory behavior, referred to as Gibbs oscillations; hence, computations at high
resolution are limited. However, the finite Fourier data contains enough information about the original so-
lution that one can reexpress the data as a Padé or Gegenbauer finite expansion and can thus reduce the
oscillations. In both cases, the reconstructions require obtaining the coefficients for the reconstructed ap-
proximations in terms of the Fourier coefficients. Implementations with Fourier—Padé reconstructions in [24]
have successfully reduced the oscillations for Fourier pseudospectral solutions of nonlinear partial differential
equations such as Burgers’ and Boussinesq equations. The Gegenbauer reconstructions have been applied to
medical projection data computed by Fourier methods [22]. Here we apply the Gegenbauer reconstruction in
Fourier pseudospectral time-domain simulations [19] of Maxwell’s equations. The computational results show
that the Gegenbauer reconstructions successfully reduce the noise in the Fourier pseudospectral simulations.

This paper is organized as follows. Section 2 gives the formulation of Maxwell’s equations and the auxiliary
differential equation for the current term from the Drude model [4], [16], [27]. The numerical discretizations in
space and time and the setup of parameters are presented. Section 3 introduces the Gegenbauer polynomials
and the postprocessing technique (i.e., the Gegenbauer reconstruction procedure) in one dimension. Their
convergence behaviors are demonstrated for a nonperiodic function and some discontinuous functions. Section
4 presents the implementation in two dimensions and the reconstructed results of the Fourier pseudospectral
solutions from the nanoparticle scattering simulations. Section 5 discusses the remaining issues concerning
parameter optimizations for the reconstructions and computational automation with an appropriate error
estimate. Section 6 briefly summarizes our research.

2 Formulations

Let us consider Maxwell’s equations governing planewave propagation in unbounded media

oD

E = VxH- J, (1)

OB

- = _ E 2
V-D = p, 3)
V-B = 0, (4)

where F is the electric field and B the magnetic induction. The electric displacement D and the magnetic
field H are defined by

_D = €0E+P, (5)
H = YB-wm, (6)
Ho

where P is the electric polarization (i.e., average electric dipole moment per unit volume), M the magneti-
zation (i.e., average magnetic dipole moment per unit volume), €y the permittivity, and po the permeability
of free space.



Equations (1)—(6) are supplemented with constitutive relations having the form

J = 0oE, (7
B = uH, (8)
P = ex.E, 9)
M = ymH, (10)

where ¢ is the conductivity, u the permeability, x. the electric susceptibility, and yx,, the magnetic suscep-
tibility, which vary depending on the medium.

In free space, the current J, polarization P, and magnetization M vanish. In the region occupied with
metal, the magnetization M vanishes. The basic linear connection in the constitutive equations (7)—(10) can
be nonlocal. Thus, using the Fourier transforms of the field quantities, rather than the fields themselves, one
can write equations (5)—(6) in terms of the Fourier transform as

D(w) = e(w)E(w) and B(w) = p(w)H(w). (11)

The phenomenological coefficients ¢ and € can be complex, implying differences in phase between the various
time-harmonic fields. If the imaginary part of any of the phenomenological coefficients of a medium is
nonzero, the amplitude of a planewave will decrease as it propagates through such a medium because of
absorption of electromagnetic energy. For metal, u is close to unit, and the dielectric constant € is complex
valued, with a positive imaginary part and a negative real part. As a result, time-domain simulations are
difficult; in particular, the negative real part of the dielectric function causes numerical instability. To
overcome this, we use an alternative form for the current density J instead of using equation (7).

2.1 Drude Model

We start by examining the governing equations for the current term. The planewave solutions to the
Maxwell’s equations have the forms

E = Epe!®*=9Y and H = Hye!k@—wb), (12)

where k is the wave vector and w is the time frequency. Then the frequency-domain Maxwell equation
relating to (1) can be written as

—iwe(w)E(w) =V x H(w). (13)
One can reexpress €(w) = €g€p as
€(w) = €0 [eco + (65 — €0)], (14)

where €4, is the infinite frequency value for the dielectric constant and ¢, will be specified later. Identifying
the current density as

J(w) = —ieg(ep — €00) E(w), (15)
we rewrite equation (13) as
J(w) —iwegep B(w) =V x H(w). (16)
Inverse Fourier transforming (16) gives

OE(t)
ot
The following is the Drude model [4], [16], [27] for the optical properties of a free-electron metal:

J(t) + €0€co =V x H(t). (17)

w2

—ey — —— P 18
T o T 24T, (18)



where I'), is the Drude damping coefficient and wj, is the plasmon frequency. This leads to

8% J(t)

0I(t) _ 0B

e +T, o - g, (19)
Reducing the order of the ordinary differential equation, we have
&g—ff) +T,J(t) = eowf,E(t). (20)
Equipped with equation (20) for the current term, we define the governing time-domain equations as
eaa—f = VxH-J, (21)
u%—Ij = —-VXxE, (22)
g—i = aJ+pE, (23)
where the phenomenological parameters in free space are
€=¢€y, p=pg, =0, and =0 (24)
and in the metallic region are
€= €0€c0, U= fo, @ =-Tp, and g = eowz. (25)

The values for the coefficients e, I'p, and w, will be assigned by experimental measurement [16].
The electromagnetic field vectors and the current vector are generally written by decomposing each
component as follows:

E=(E;,Ey,E;), H=(H;,Hy,H;), and J = (J3,Jy,J>). (26)
Here we consider the transverse-electric mode in two dimensions:
E=(E;,E,,0), H=(0,0,H,), and J = (J,Jy,0). (27)
Then the governing equations (21)-(22) are written as

oF oF OF
A - 2
5 A8m+Bay+CF’ (28)

where the field vector is F' = [E,, E,, H,, J, J,]T and the coefficient matrices are

00 0 00 001l oo 0 0 0 0 0
00 -1 00 00 0 00 0 0 0 0 0
A=|0 -, 0 00|,B=|, 0000O0|ad C=|0 00 0 0 (29)
00 0 00 000 00 B 0 0 a, O
00 0 00 00 0 00 0 B, 0 0 a

One can check the well-posedness of this formulation. Equation (23) contains no spatial derivatives and
hence it is indeed an ODE for J. After the undifferentiated terms in equation (28) are dropped, it becomes
a 3 x 3 Maxwell system. One can symmetrize it through the following change of variables [15]

G = (Es, By, mHZ) (30)

Thus the system is symmetric hyperbolic and therefore strongly well-posed.
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Figure 1: Computational domain

2.2 Numerical Scheme

Let us define the computational domain on [0, L,] x [0, L,], where L, = 1024 nm and L, = 512 nm. The
grid points are
Lyj

(i=0,..,N,—1) and y; = =2(j=0,..,N, —1). (31)
Ny

_ Lyi
=5

T

Consider a metal cylinder with radius 25 nm whose center is placed at x = 767.5 nm and y = 255.5 nm in
the computational domain (see Figure 1). The parameters of the equations in (25) for the metallic region are
chosen as €5, = 8.926, T, = —3.08 x 10!* Hz, and w, = 1.7577 x 10'6 Hz, as in [16], [17]. Since we simulate
infinite-space solutions on a finite computational domain, we introduce an artificial absorbing layer in order
to avoid the reflection from outgoing waves. The thickness of the absorbing layer is set to 28 nm and 40 nm
in the z- and y-direction, respectively. We use the uniaxial perfectly matched layer (UPML) formulation [26],
[27]; in this region the field intensity vanishes as it reaches to the boundary of the computational domain.
Thus, it is reasonable to consider this problem as a periodic problem and to apply Fourier approximations
globally in the computational domain.

Our numerical scheme is based on the Yee scheme [16], [28]. We simply replace the spatial derivatives
by the Fourier pseudospectral differentiation operators, denoted by D, and D, below, and use second order
explicit leap-frogging for the time integration. At the time level t" = nAt, our scheme is written as follows:

o P = par- (32)
1 1
A s
v~ B - _pogrggn (33)
At z Yy
FI"+1 _Hn —n+i —n+l
p—= At =~ = DyE; ? -D,E, 2, (34)
jn+1 _ jn j"+1 jn e .
T N T - gl= 2+ T _|_ﬂEg+l/Z7 (35)
jn+1 _ jn jn+1 + jn e



where the vector representations of the fields and parameters are defined, respectively, by

E = [(E)o0, (Bx)10y s (Ba)ijs eves (Bg)Na—1ny 1] for (Ep)ij = Ea(wi,y;), (37)

€=¢&;j = €(w4,y;), a=a;=oa(r;,y;) and B =By = B(xi,y;)- (38)

2.2.1 Spatial Derivative

The Fourier pseudospectral differentiation operator in two dimensions in (32)—(36) can be represented by
using a one-dimensional derivative operator. Let us consider a smoothly differentiable function f(z) with
period 27, specified at N discrete grid points =g, ..., Z;, ..., N1, Where x; = 27TE/N . Fourier pseudospectral
approximation of the function f(z) is defined by

() =" fa) (), (39)

where II;(z;) = §;; and IL;(z) is a Lagrange interpolation polynomial of degree N [11]. The polynomials
IT;(x) are given explicitly by

I;(z) = % sin [N (z — x;)/2] cot [(x — x;)/2]. (40)

In the pseudospectral method, the first derivatives dfy(z)/dz at the grid points z; are obtained in terms of
the values f(z;) by simply differentiating (39):

dH; (Ilfj) A
i

LS = (D), (41)

dfn(z;) =
d.CIIJ = ;f(wg)

where D is a N x N matrix with elements

;) 0 G=))
an = = i+3 2, A
3 dz EU= cot(z; — o3) (i # J)-

On the other hand, the trigonometric polynomial II;(x) of degree N has the equivalent representation [11]
defined by

(D)

(42)

N/2-1

II(z) = — Z etk(@=a3), (43)

k=—N/2

Using (43), one can rewrite equation (39) as follows:

In( )—Nz_lf( SE Nfl o) = Nfl Fre™® (44)
N(z) = 2 T; Nk:_N/2e —k:_N/2 e
defining
I e .
fo= 5 3 fapei, (45)

0

=
which is in fact the discrete Fourier coefficient of f(x). Thus one also can evaluate derivatives using equation
(44) to obtain

dfn(z;) 1 e ikz
- N Z ik fre®™®. (46)

k=—N/2




Note that fn(z;) = f (x;),j’ =0,1,...,N—1, but their derivative ‘Z—;" is not necessarily exact with % on the
grids z;.

For the sake of convenience, here we use the physical space expression (41), rather than (46), for the
spatial derivative D, with respect to z in the scheme (32)—(36) using the one-dimensional derivative matrix
D, = [(Dz)ﬂ] for i,7 = 0,...,N, — 1 associated with N, points on the interval [0,L,]. Expressed as a
matrix-vector product, the spatial derivative D, reads

D,

-
)
es]l
[l
S
)
es]l

(47)
D,

D, is applied to each row [Eoj, Evjy - En,—15]F,j = 0,..., Ny — 1, in the computational grid of Figure 1. To
compute the derivative with respect to y, one applies the corresponding one-dimensional N, x N, matrix ﬁy
to each column [Ejg, B, ..., Ein,—1]7,i = 0, ..., N, — 1. This can be conveniently expressed as D, = I ® D,
and D, = D, ® I using the tensor product ® defined in [5]. Let A = [a;;] and B = [b;;] be k x I and m x n
matrices, respectively. Then their tensor product is given in block matrix form as

anB ai2B -+ ayB
anB ax»B --- ayB

A®B = . . . (48)
ale ak2B .- ale

2.2.2 Computations

We obtained computational results using the Fourier pseudospectral time-domain (PSTD) method (32)—
(36). Specifically, we examined snapshots of the field components E,, E, in a local domain Q = [640, 896] x
[128, 384] nm?, the region within the dotted line in Figure 1, and frequency-domain field distributions in Q
defined by

E(z,y,w0) = / ¢ Bz, y, t)dt, (49)
0

Hz,y,wo) = / €0 Bz, y, t)dt. (50)
0

For snapshots, we used modulated Blackman-Harris pulses [8] covering the range of frequencies [)\i(J —-a, % +a]

Hz, where a =1.800e14, A\ =340 nm and ¢ = \/% We choose an allowable time step [8], [19], [23]

2min{e}
mey/1/Az? + 1/Ay?

Note that, because of a hard line source used in the simulation, the pulse width and the final time must be
chosen so that retroreflected waves from the line-source cannot get into the local domain Q. The snapshots
for the field components E, and E, at time 11.48e-15 sec with At =1.3514e-18 required 8,495 iterations in
time and a total CPU time of 2987.2 sec on a Mac G5 machine for N, = 1024, N,, = 512 (see Figures 7-10).

For frequency-domain simulations, we used the range of frequencies [)\i0 —b, )\—CO +b] Hz, where b =7.365e14,
Ao =340 nm for the source pulse. The pulse width should be short enough to avoid retroreflected waves from
the source getting into the local domain €2, and the total physical simulation time must be chosen so that the
fields go to zero at the end of simulation, avoiding a time-window effect. We obtained the distributions of
the time-averaged electric field by computing the magnitude of the equation (refAV). We used the compact
line source [20] at the sinusoidal frequency wo = 2% Hz with the same size of At and 22,200 iterations of a

— Ao
total CPU time of 7893.9 sec (see Figures 11-13). °

At < CFL

(51)



However, we observe nonphysical oscillations in the PSTD solutions. In our problem configuration, the
solution is piecewise smooth as a result of the discontinuity in the dielectric function along the interface
of the cylinder. Hence, we cannot obtain an accurate approximate solution with the standard Fourier
pseudospectral method, although that is a good method for analytic and periodic functions. In the next
sections, we introduce a cost-effective reconstruction technique as a postprocessing method and use it to
reduce the nonphysical oscillations in our PSTD solutions.

3 Gegenbauer Reconstructions in Finite Spaces

Although the results by Fourier pseudospectral time-domain simulations are obscured by oscillations aris-
ing from the Gibbs phenomenon, one can recover accurate reconstructions by using either Fourier-Padé
approximations [25] or Gegenbauer polynomials [14], [22].

Here, we consider Gegenbauer reconstructions. This method requires a priori knowledge of the location
of the discontinuity. In the present application, the discontinuity location, which arises from the jump in
dielectric function, is specified as part of the problem definition, and Gegenbauer reconstruction is therefore
appropriate.

3.1 Gibbs Phenomenon

We briefly revisit the prototype problem of Gibbs oscillation. Consider a nonperiodic analytic function
f(z) in [-1,1]. Now, assume that the point values f(z;), where z; = 2j/N,j = 0,...,N — 1, are known
but the function f(z) is not. This is equivalent to knowing the first N discrete Fourier coefficients frs
—N/2 <k < N/2 -1, of the function f(z) defined by

N-1
fe =" flwj)emimhes. (52)
7=0
Then the classical Fourier sum
N/2-1
In@) = Y frel™ (53)
k=—N/2

reconstructs the point values everywhere in —1 < z < 1.

The finite Fourier expansion converges exponentially as N increases when the approximated function
is analytic (i.e., inifinitely smooth) and periodic [12]. If f(z) is either discontinuous or nonperiodic, how-
ever, then fy(z) is not a good approximation to f(z). Away from the discontinuity or the boundary, the
convergence is only O(%), and there is an overshoot close to the discontinuity or the boundary that does
not diminish with increasing N [12]; this is referred to as the Gibbs phenomenon [10]. The phenomenon
manifests itself in many situations, including the problem we present in this paper.

3.2 Review of Gegenbauer Approximations

Gottlieb and Shu showed that, knowing the first N Fourier coefficients, one can reconstruct a rapidly con-
verging series based on the expansions in Gegenbauer polynomials [14]. The point values of f(z) everywhere
in —1 < x <1 can be recovered with exponential accuracy in the maximum norm up to the discontinuity or
the boundary.

The Gegenbauer series for the function f(z), based on the Gegenbauer polynomials C2(z), which are
orthogonal over the range € [—1,1] with the weight function (1 —22)® 2 for any constant o > 0, is defined
by

flo) = bxCa(a), (54)
n=0



where the continuous Gegenbauer coefficient is defined by

~ 1 1 1

bp=s5 | (1= 2?)* "2 Cp (z) f () de, (55)
n J—1

with the normalization constant

M(a+3)
(@)(n + a)

T'(n+2a)

(56)

The Gegenbauer polynomials can be expressed by Rodrigues’s formula [1], and more conventionally they can
be computed by the following recurrence formula [1]:

nCo(z) =2n+a—1)zCY_(z) — (n+2a — 2)CF_,(x). (57)
They achieve their maximum at the boundary
ICr (@) < |CR(1)], —-1<z<L (58)

For large o and n, h% and C¢(1) are almost of the same size, which is proven by using Stirling’s formula
[1], [13]. In Figure 2, Gegenbauer polynomials of degree n = 5 are shown for different a. As « increases,
the amplitude of C(x) dramatically increases at the boundary. On the other hand, the weight functions
rapidly approach zero near the boundary as «a increases. The convergence rate of the infinite series depends
on the rate of decay in the magnitude of the coefficients. A rigorous proof of the exponential convergence of
the Gegenbauer series to an analytic function f(z) is shown in [13], [14].

Note that more commonly used Chebyshev and Legendre polynomials are important subclasses of the
Gegenbauer polynomials with the relations

To(z) =n lim '(20)C5(2), La(x) = Cf (2), (59)
where T, (z) and L,(x) represent Chebyshev and Legendre polynomials of degree n, respectively. Figure 2
shows some profiles of them for degree n = 1,2, ...,5. They are obtained by using a cost-effective version for
computing the Gegenbauer polynomials; this method is discussed in Section 3 and 4. For computation of
the Chebyshev polynomials, following the relation in (59), « is chosen as 1.0e-11 for the limit relation, which
gives polynomial accuracy to 7 digits.
The sum of the first M + 1 terms of the Gegenbauer expansion in (54), denoted by

M A
g (@) =Y baCx(x), (60)
n=0

converges exponentially to an analytic function f(z) in [-1,1]. In practice, however, the continuous coef-
ficients Bg must be computed and they are computed in a discrete sense. Assume that we are given only
an approximation of f(x), the Fourier pseudospectral data, in our problem. It was shown that the Fourier
finite expansion (53) can be used to approximate Bg Now we define the discrete Gegenbauer coefficients
b%, instead of the continuous Gegenbauer coefficients B;‘;, by substituting f(z) by fy(z) in (55). Then the
discrete Gegenbauer finite expansion is expressed as

M

girn(@) =Y brCn (), (61)

n=0

where the discrete Gegenbauer coefficients are defined by using fn(z) as follows:

1
b= e [ (=) A O3 @) (@) (62)

h3 J -1



Figure 2: First row: Gegenbauer polynomials C&(z) (left) and weight functions (1—22)®~2 (right) for various
a. Second row: Subclasses of Gegenbauer polynomials, Legendre polynomials L,(x) (left) and Chebyshev
polynomials T, (z) (right) for n =1,2,...,5.

In fact, one can represent the discrete Gegenbauer coefficient in terms of the discrete Fourier coefficients.
Plugging (53) into (62), one obtains the following

J-1
2 B 1 1 . )
= X A (3 [ 0= tez@emas). (63)
where the integration part has an explicit form [3] for k # 0 as
1 ! 2\a—1 iTk® 2 a;n
e | (1=2)7E00(2)e™ de = T(@) ()" (n + @) Jota (k) (64)
nJ-1 m

where I'(z) is the gamma function and J,(z) is the Bessel function of first kind. For k¥ = 0, one uses the
orthogonal property of the Gegenbauer polynomials. Thus we have

X1
b= fodon+ Y RT(@)(0) "0+ @) sl (65)

k=—X k0

Now we give an outline to obtain the proof of the exponential convergence of the discrete Gegenbauer
expansion g y to the function f. One can make the following error be exponentially small,

If = ghrwll < 1 = garll + llgar — gz wll; (66)

by showing the two terms on the right-hand side to be exponentially small, separately. Define the truncation
error as follows:

g3 — 93z, nll = _max IZ n = 0R)CR (), (67)
=0

—1<z<1
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which is exponentially small in maximum norm over [—1,1] if both a and M grow linearly with N [13], [14].
Then the regularization error is defined by

M
I =gl = g, (o) = 3005 @) (68)

which is again exponentially small for o = yM with any positive constant + [13], [14]. Therefore the maximum
error for the discrete approximation ggy n to f (z) is exponentially small. Note that, for a fixed @ and N,
the approximation gg, n obviously converges to fn(z) as M increases, which one does not expect as a good
approximation. Proper relations between a, M and N are necessary. In application, the amount of Fourier
coefficients is fixed (i.e., N is fixed). Thus « and M are free parameters to be chosen properly depending
on N and the size of each subdomain. The optimum relation between the parametes and other factors has
been analyzed analytically in [14]. In real computation, it requires adjustment. The study of optimizing
parameters computationally has been lacking so far. In this paper, we show successful computational results
obtained by appropriate parameters chosen from many numerical experiments. These results are discussed
in Section 5.

The suggested procedure to obtain the discrete Gegenbauer finite expansion g, n generally consists of
the following steps:

Step 1. Compute the first M + 1 discrete Gegenbauer coefficients b% in (63) by using fn(z).

Step 2. Construct the series (61) cost-effectively by expressing the Gegenbauer polynomials in terms of
trigonometric functions.
In the next sections, we first discuss the detailed procedure for single-domain and multidomain reconstruction
in one dimension and then extend the procedure to two dimensions.

3.3 Single-Domain Reconstruction
Here, we focus on a cost-effective Gegenbauer reconstruction to compute g3 y for a single domain on [-1, 1].

Let us define the following notation for formula (64):

2
For k#0, Bpr = F(a)(H)ain(n + @) Jnta(km),

For k = 0, Bn,k = énk. (69)

Then the discrete Gegenbauer coefficients b2 in (65) can be written in matrix form as

bg Bo, gy Boys - Boyy ]| J
(o3

by Bl,f% B1,7%+1 B1,§71 f—Z_N+1
. "
bl Bu-y Bu-y By fya

Applying the even and odd property of the Bessel function, we have By, , = B, _j. For a real function f(z),
the Fourier coefficients are fk = f_k. Thus we have

—1 %—1
by = B,_xfx+ Y, Barfe++Boofot+ Y Burle
k=—(3-1) k=1
|
= B, _xf x+Boofo+ Y (Burfe+ Burfe)- (70)
k=1

By taking the conjugate of (N/2 — 1) terms of B, f, we can now reduce the computational cost for
computing the Gegenbauer coefficients from O(N) to O(N/2).

11



Next, following the procedure introduced in [22], we take the explicit form of the Gegenbauer polynomials
expanded by the trigonometric polynomials, instead of using the conventional recurrence formula [3]: for
xz =cosf € [—1,1] with 0 € [—7, 7],

n

Cf(cosb) = Z py, n €OS(n — 2m)8), (71)
m=0
where
o _ Tla+m)I'(a+n—-m)
Imn = m!(n —m)T2(a) (72)

Let us consider a set of grids z;, 1 = 0, ..., N — 1. Then the approximate Gegenbauer expansion on grids z; is

M
ghun(@) = D baCS(cosz;)

= Z b (Z am n cOS[(n — 2m)(cos ™ x,)]) . (73)

Let T; 1, = cos(mé;) for ; = cos™ z; and g; = gir, ~(x:). Assuming that M is even for the sake of simplicity,
we can express the Gegenbauer reconstruction on the grids z; in matrix form as follows:

1

8o To,0 Top - Tom ago 0 afy 0o .. aa%,M bg
g1 Ti,0 Tip ... Twu 0 2 0 2afy .. 0 &
- S 0 0 2 0 .. 0 :
B : 0 C e 2a$y,
gN-1 Tno1o Tn-1g oo Tnoawm 0 0 0 0 0 2a%y b,

To discuss the computational cost, we denote the first N x (M + 1) matrix in the right side of the above
equation by T and the second (M + 1) x (M + 1) matrix by A, that is,

g = TAb, (74)

where g = [go,81,--gn_1]T and b = [bg,b¢,...,b%,]7. The number of operations for the matrix-vector
multiplication Ab is W, and the multiplication with T is N(M+1). Then, for M = N (0 < 8 < 1)
(i-e., proportional to N), the total cost is O(38(8 +4)N?). On the other hand, the conventional recurrence
formula (57) costs O(33N?). Since % ~ 1, the fast version reduces the computational cost by one-third.

In summary, the reconstruction procedure comprises the following general steps:

Step 1. Compute the first M + 1 discrete Gegenbauer coefficients (70).

Step 2. Construct the Gegenbauer finite sum on grids following (74).

Example 1. We apply the reconstruction technique to Fourier pseudospectral data of a nonperiodic
function f(z) = z on [—1,1], assuming that we are given N = 128 discrete Fourier coefficients, as defined
in (52), on the grids z; = -1+ 2i/N,i = 0,..., N — 1. Figure 3 shows the Fourier approximation with
N = 128 modes, its reconstructed results, and their pointwise errors. Since the function f(x) is nonperiodic,
the standard Fourier method gives only O(%) and O(1) convergence, and oscillations are severe near the
boundary. Since fn(z;) is exact with f(z;) on grids z;, the point values are evaluated on y; = —1+14/N,i =
0,..,2N — 1 in order to see the oscillations and their resolution clearly. After reconstruction with the
parameters m = 4,a = 3, the original function f(z) = z is recovered successfully. As the parameters
increase to m = 8, = 6, the errors drop exponentially up to the boundary. Reconstruction CPU times are
provided.

12
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Figure 3: From the left: Fourier approximation, its Gegenbauer reconstruction, and pointwise errors. Re-
construction CPU time = 0.22 sec and 0.42 sec for m = 4, = 3 and m = 8, a = 6, respectively, on an AMD
Athlon of 1 GHz.

3.4 Multidomain Reconstruction

Consider a piecewise analytic function f(z) that is integrable in [0,L]. Suppose that f(z) has known
discontinuities at * = do and z = d; in [0,L]. Then we divide the global domain into three subdomains,
denoted by Q4 = [0, do], Q2 = [do, d1], and Q» = [d1, L], and carry out the Gegenbauer reconstruction in each
subdomain. First, we define a set of grids in the global domain defined by z; = %, i=0,1,.., N—1and
assume that the point values f(z;) (j = 0,1,...,N — 1) are given. Then we obtain the Fourier coefficients
fk(—% <k< % — 1) by applying a discrete fast Fourier transform, so that the classical Fourier finite sum
everywhere in [0, L] is

fn@) =Y fre e (75)

k=—X

Let us denote a subdomain by Q, = [a,b] and define a local variable, for £ € [-1,1], 2® = @E + @

Let € = ”_T“ and 6 = ”’LT“ The Fourier finite sum using the variable £ is

wf2

1
In(@(8) = Foeimh(eeto), (76)
k

&

Now we define the Gegenbauer coefficients in each subdomain:

I 1w
1= o [ (- b @ el ™
n J—1
Then plugging (76) into (77) and using the explicit formula (64) for the integration part, we denote
B eimkd 1 L )
For k # 0, Bg’k = s / (1 — £2)° 202 (£)ei™ret dg
n -1
; 2
= e™I0(a)(=—)%"(n + @) Jnial(ken),
kme

For k=0, By = Onk. (78)
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Then, the local Gegenbauer coefficients are expressed in a matrix form:

Q, Qs Qs 7
P2 BO_ﬂ BoiﬂH Bo N, N
0 g, 2 po, ? a2 Sz
QS s s s
by B —X B1,7§+1 Bl,%fl fﬂ+1
by B% B . B fx
M- M- v M,E -1 F-1

Next, we evaluate the point values in each subdomain as follows. Let x° = {xf,,xj} be a subset of

{a:j};y:_ol, which is in Q,. Define T}, = cos[m(cos™ &)] for & = 2-2] — $+2. Note that the Gegenbauer

coefficients are newly computed in each subdomain and the reconstructed point values, denoted by g?s, on
grid set x° in each subdomain are obtained by

g?s Tz's,o Tis’l TiS’M aoo 0 a2 0 a% M b(?s
0 2a01 0 2a13 ... 0 b?s
_ 0 0 2@02 0 0
- 0 - 2a1M .
g TSy T2 . Ty 0 0 0 0 0 2aum by

Let N* be the number of the elements in x° and the number of discontinuities D. Then the first N* x (M +1)
matrix in the right-hand side of the equation above is denoted by T*® and the second (M + 1) x (M + 1)
matrix by A®. Then

g° = T5A®b®, (79)

where g* = [g5,..97°]7 and b® = [b5*,b7",...,b37]7. The number of operations for the matrix-vector

multiplication A®b?® is w. However, one has to compute this procedure for each subdomain, so

the total of amount for this procedure is w. The multiplication with T® is N¥(M + 1) in each
subdomain; however, it remains the same amount of work as in the single-domain case, so N(M +1). Thus,
for M = BN (0 < B < 1) (i.e., proportional to N), the total cost is O(33(Dg + 4)N?). On the other hand,
the conventional recurrence formula costs O(3DAN?).

In summary, the reconstruction procedure for multidomain case is as follows :

Step 1. Compute the first M + 1 discrete Gegenbauer coefficients (77) in a subdomain.

Step 2. Construct the Gegenbauer finite sum (79) on the grids in the subdomain.

Step 3. Repeat Step 1 and Step 2 in the remaining subdomains, separately.

Example 2. Consider the following discontinuous functions, and assume that we are given only N = 128
discrete Fourier coefficients, as defined in (52), for each function:

3 _ 2 -1<z< —l)
_ [ rz+1(-1<z<0) T +2—(11_ DR
filz) = { r—10<z<1) and fa(z) = mmer_Sg((;gSmmfﬁ) (80)

Figure 4 shows the Fourier approximations with N = 128, their reconstructed results and the pointwise
errors for the functions. For discontinuous functions, the standard Fourier approximation gives only O(%)
convergence away from the discontinuities and O(1) convergence near the discontinuities, as shown in the error
plot. Reconstructions are carried out for the function f;(z) with two subdomains and for the function f3(z)
with three subdomains. For the reconstructed ones with increasing parameters, the errors drop exponentially
up to discontinuities.

Example 3. Consider the following piecewise analytic function, and assume that we are given only

14
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Figure 4: From the left columns: Fourier approximations, their Gegenbauer reconstructions, and pointwise
errors. Reconstruction CPU time: 0.47 sec (m = 4,a = 3) and 0.90 sec (m = 8, = 10) for fi(x), and 0.72
sec (m =4,a =3) and 1.38 sec (m = 8, = 16) for fo(z) on an AMD Athlon of 1 GHz.

N = 256 discrete Fourier coefficients:

([ (24+0.43)%(—=1 <z < —0.43)
50(x + 0.43)2(—0.43 < z < —0.33)
50(x + 0.23)2(—0.33 < z < —0.23)
f(z) =< —3(z® —0.0529)(—0.23 < z < 0.23) (81)
—50(x — 0.23)2(0.23 < = < 0.33)
—50(x — 0.43)2(0.33 < = < 0.43)
0.5(z — 0.43)2(0.43 <z < 1).

\

Figure 5 shows the Fourier approximation with N = 256, its reconstructed result and the pointwise errors.
Reconstructions are carried out with 7 subdomains whose interfaces are indicated by the vertical dotted
lines. Parameters are chosen as M = 10,2,2,8,2,2,8 and a = 6,2,2,8,2,2,6 in the order from the left
subdomain. The error for the reconstructed one drops compared to the Fourier result.

3.5 Reconstruction Time

Since the reconstruction requires to compute the Gegenbauer coefficients in each subdomain, we first examine
the computation time to obtain a set of the (M + 1) Gegenbauer coefficients with N Fourier data in a single
subdomain. Figure 6 shows the cases of M =1,...,20 for N = 32,64, 128, 256 for a fixed a = 1. For different
a, the CPU time is scaled by a constant number. One can estimate the total reconstruction time increased
by multiplying the number of the subdomains to the CPU times.
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Figure 5: From the left columns: Fourier approximation, its Gegenbauer reconstruction, and pointwise errors.
Parameters for Gegenbauer reconstruction are chosen as M = 10,2,2,8,2,2,8 and a = 6,2,2,8,2,2,6 for 7
subdomains. Reconstruction CPU time: 3.83 sec on an AMD Athlon of 1 GHz.
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Figure 6: CPU time for computing the (M + 1) Gegenbauer coefficients with M = 1,...,20, N =
32,64, 128,256 and a = 1
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4 Two-Dimensional Reconstruction

In this section, we extend the use of the cost-effective version of the Gegenbauer reconstruction technique to
two-dimensional problems.

4.1 Global Domain [-1,1]?

The Gegenbauer finite sum in two dimensions has the following form. For £ = cos#,y = cosn in a domain
Q) = [-1,1]%, denoting a = (agz,ay) and M = (M,, M,), we have

951,n (2, 9) Z Z by 1O ()G (y), (82)

n=0 =0
where
Cf(cosl) = i ay, , cos(n — 2m)@ (83)
m=0
and
T = T &

where I' is the gamma function. The coefficients b, ; for the Gegenbauer finite sum in two dimensions are
defined by

1 Lol 1 1 o
bay = P /1/1(1—xz)"*‘ﬁ(l—y2)°‘”‘5032(w)01 Y(y) fn (@, y)dady. (85)
n 1 — —

4.2 Subdomains Q; = [ay, bs] X [ay, b,] C [0, L]?

Consider the computational domain [0, L]2. Define a set of grids z; = ]I\‘,—:(z =0,..,N;—1)and y; = ﬁ—i(] =
0,...,N, —1). Now, assume that the point values f(z;,y;) are known but the function f(x,y) is not. Then

the discrete Fourier coefficients sz,ky; —% < kg, ky < % — 1 are obtained by

N-1

2

27k

B (86)

f m,,y]

Il
o

=0 j

and the two-dimensional Fourier finite sum everywhere in Q = [0, L)? is

2wkz 2mky

fn(z,y) = Frak Tl T Y, (87)

Let us denote a subdomain by Q;; = [az,b;] X [ay,by], where a, and b, are the known discontinuities in -
direction and a, and b, in y-direction. Define local variables, for £, € [-1,1]x[—1,1], z° = (b”;a”) &+ (b“;a”)
and y' = Bosoly  Outan) e, = bazta g = betos o — BumO apq g = bt Then the Fourier
finite sum in the subdomain €2, is expressed by

fN(iUS (5)’ yt (77)) — fkm,ky eiﬂkm (ez§+52)ez’7rky (eyn-‘réy)‘ (88)

17



Plugging (86) into (88), we have

F-1 N1 F-1 /N1
INEE©ym) = > > (Z f(a:z-,yj)ei“fﬂzi> pimkea®(€) | g—iZ3Ly; imkyy" (n)
ky=—4& 7=0 |[k,=—% \i=0
F-1 /N1 -
= In(@*(©),y5)e” T W | ey, (89)

and the Gegenbauer coefficients in the subdomain Q; have the form

N
N1

. 1 a1 vty JETP
bai' = o RGO DY Zb (n,y)e™ " v | ™RV () L dn, - (90)
! - ky:_%
where
1 ! -1 qa s
b(mm) = g [ (=€) OO )i o)
l —

Then, for a fixed y;, the one-dimensional Gegenbauer reconstruction in the z-direction is written as

g (a* Zb n,y;)C3= (€). 92)

Finally, the two-dimensional reconstruction form is

g%t (z® (€ Z b O (n (93)
where

1 5= N-1
Qs ¢ 1 Qy— % Oy Qst/ s _i2rhy im t
byi' = ey 1(1—1/") 2O ) | DY DD e @ (©),yy)e T Y| e ) . (94)

Qy
hn kyzf%
Now (78) and (79), the local Gegenbauer coefficients are given in matrix form as
t~ s T
R (Bg2 ) : (95)

where bt = [bgfl’t], f = fi ke, BY = [BY, ], and BY = [Bf?,;y], as defined in (79). Then the two-
dimensional Gegenbauer reconstruction can be summarized in matrix form as follows:

g = [TLAL(TIAZ)T]T = TIAZ (%) (AT (T, (96)
Qs t —_ —
where g*t = o317, T8 = [T%,] = [cos(m(cos &)], and T, = [T¢, ] = [cos(m(cos™ ny)] for &
26 — petle and iy = an nt — z ytay *, respectively.

In actual computation, the reconstructlon procedure for the two-dimensional problem can be done through
the following steps, which is in fact the one-dimensional reconstruction slice by slice in the z direction and
then the same procedure in the y direction:

Step 1. Compute the one-dimensional discrete Fourier coefficients with respect to x for a fixed y;.

Step 2. Compute the first M + 1 discrete Gegenbauer coefficients in a subdomain.

Step 3. Construct the Gegenbauer finite sum on the grids in the subdomain.

Step 4. Repeat Steps 2-3 in the remaining subdomains, separately, for the fixed y;.

Step 5. Repeat Steps 1-4 for each y;, separately, and store all the data for the next step.

Step 6. Compute the one-dimensional discrete Fourier coefficients with respect to y for a fixed x;.

Step 7. Repeat Steps 2-5 for all z;, separately.
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4.3 Application

We apply the cost-effective Gegenbauer reconstruction technique to the two-dimensional Fourier pseudospec-
tral time-domain solutions obtained by (32)—(32), shown in the first columns of the Figures 7-13. The recon-
structed results are demonstrated in the second columns of Figures 7-13 associated with the PSTD results.
Those figures are for the regions within the dotted box in the computational domain shown in Figure 1.

In the Figures 7-10, the snapshots for the field components E, and E, at time 11.48e-15 sec are demon-
strated. The data size in the box is 256 x 256 in the case of N, = 1024, N, = 512 (i.e., Az = Ay = 1 nm).
The Fourier-pseudospectral solutions show nonphysical oscillations all over the domain across the cylinder
and strong oscillations close to the surface of the nanocylinder. Figures 8 and 10 show the one-dimensional
slices along the specified axes across the cylinder. One-dimensional reconstructions are carried out with
five subdomains. Each subdomain takes different parameters m and a during the reconstruction. At this
stage, the parameters are chosen by observation through numerical experiments. One- and two-dimensional
reconstruction results show a clear improvement in reducing the oscillations. The total CPU time for the
PSTD simulations in Fortran on Mac G5 is 2987.2 sec and their Gegenbauer reconstructioins in Matlab on
AMD Athlon of 1 GHz is 164.79 sec in Figure 7. Compared to the total PSTD simulation CPU time, the
postprocessing CPU time is insignificant.

In the Figure 11-13, the distributions of the time-averaged electric field are demonstrated. The recon-
structions are carried out for the Fourier data N = 512 (i.e., Az = Ay = 0.5 nm). The reconstructed
results are superior to the finite difference time domain(FDTD) results computed by the Yee scheme [28] for
Az = Ay = 0.1 nm, shown in the third columns of Figure 11-13.

5 Discussion

Parameter optimization is important for the Gegenbauer reconstruction technique to be useful in practice.
In this problem, the regions near the sharp changes of the solutions require relatively larger o and smaller
m as in Figures 7-13, whereas in the region with relatively smooth changes of the solutions work fine with
small . Thus we might have consistent results generally with small « and large m in the smooth region
and large a and small m in the subdomain where the solutions are nonsmooth. Accordingly, we introduce
an idea to implement an automated reconstruction algorithm that may be parameter independent in real
computations. Since we know the reconstruction behaviors depending on m and «a, we can fix the parameters
for a more structured and a relatively smooth region a priori by initially giving the minimum number of
the subdomains taking account of the discontinuities. Then we can carry out the reconstructions until they
give better resolutions, by increasing the number of subdomains, instead of controlling the resolution by
changing the parameters. An a posteriori error estimate is required to measure the improvement of the
reconstructed solution. To divide the subdomains, we use the idea of adaptivity; that is, we increase the
number of subdomains around the discontinuities. This idea will be further discussed in a future paper.

6 Conclusion

We have presented a cost-effective Gegenbauer reconstruction technique with a priori knowledge of the loca-
tion of discontinuities. In one dimension, exponential convergences of the Gegenbauer reconstructions were
demonstrated for a nonperiodic and some discontinuous functions. We have extended the implementation
to two dimensions and applied it to Fourier-pseudospectral simulations for electromagnetic waves interac-
tion with a nanoscale structure. Successful reductions of the oscillations in Fourier-pseudospectral solutions
are obtained after the Gegenbauer reconstructions. Appropriate choices for the parameters were briefly
discussed; further development for an parameter-free implementation algorithm remains as future work.
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tational Science Division subprogram of the Office of Advanced Scientific Computing Research, Office of
Science, and in part by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and
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Figure 7: Snapshots of E, at time = 11.48e-15 sec with At =1.3514e-18 : From the left, PSTD solution(CPU
time=2987.2 sec on a Mac G5) and Gegenbauer reconstruction (CPU time=164.40 sec on an AMD Athlon
of 1 GHz).
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Figure 8: One-dimensional slices of E,: Dotted lines indicate the interfaces of the cylinder for the spectral
(PSTD: left column) solution and the interfaces of subdomains for the Gegenbauer postprocessed (G-P: right
column) solution. Parameters for G-P are chosen as m = 7,7,4,7,7 for five subdomains from left to right
with a fixed a = 16.
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Figure 9: Snapshots of E, at time = 11.48e-15 sec with At =1.3514e-18: From the left, PSTD solution
(CPU time=2987.2 sec on a Mac G5) and Gegenbauer reconstruction (CPU time = 164.79 sec on an AMD
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with a fixed a = 18.
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Figure 11: Frequency-domain field distributions of |E|: PSTD (left) and Gegenbauer (middle) with Az = 0.5
nm and FDTD (right) with Az = 0.1 nm.
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Figure 12: Slices in z—direction of frequency-domain field distributions of |E|: PSTD (blue) and Gegenbauer
(red) with Az = 0.5 nm, and FDTD (green) with Az = 0.1 nm.
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Figure 13: Slices in y—direction of frequency-domain field distributions of |E|: PSTD (blue) and Gegenbauer
(red) with Az = 0.5 nm, and FDTD (green) with Az = 0.1 nm.
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